
Restful Objects 1.0 Users Guide
RESTful Web Services for Naked Objects 4.0.x

Version 0.1

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

iii

Preface .. v
1. Introduction .. 1

1.1. Introducing REST .. 1

1.2. Introducing Restful Objects .. 2

1.3. Limitations of REST .. 3

2. Using Restful Objects in Prototypes .. 5
2.1. Parent Module ... 5

2.2. CommandLine Module ... 6

2.3. Launch Configuration ... 6

2.4. Testing the Viewer ... 6

3. Resources .. 7
3.1. HomePageResource .. 7

3.2. Services Resource .. 9

3.3. Object Resource ... 10

3.4. Metamodel (specs) Resource ... 23

3.5. Security (user) Resource ... 33

4. Writing Client-side Applications ... 37
4.1. AbstractRestfulClient .. 37

4.2. RestEasy's Client-side Framework ... 38

5. Deploying Restful Objects Webapps ... 39
5.1. Update POM Dependencies .. 39

5.2. web.xml ... 39

5.3. Testing .. 42

5.4. Authentication .. 44

v

Preface
Restful Objects is a sister project to Naked Objects and provides an implementation of a web-based viewer

that exposes a RESTful web service for a Naked Objects domain model.

This manual describes how to use the Restful Objects in both prototype mode and how to deploy it

into production as a webapp. It also describes how to use Restful Objects' applib to write client-side

applications.

Restful Objects is hosted on SourceForge, and is licensed under Apache Software License v2. Naked

Objects is also hosted on SourceForge, and is also licensed under Apache Software License v2.

http://restfulobjects.sourceforge.net
http://nakedobjects.org
http://restfulobjects.sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html

1

Chapter 1

Introduction

Restful Objects is a Naked Objects viewer implementation to expose a domain model using REST. So

let's briefly explain what REST is, and why you might want to use it.

1.1. Introducing REST

Web services were introduced as a means for different computer systems to interact by network even

though they may be implemented in different technologies and with different implied domain models.

SOAP is probably the best well-known protocol for doing this, though there have been others. These

days there is a whole bunch of specifications over and above those for SOAP; together these are typically

called WS-*.

Whatever; what characterizes the WS-* implementations is that they expose only a single endpoint to be

invoked; in effect just another way of doing a remote procedure call. Put another way, WS-* -style web

services provide an for a verb - "do this for me". In fact, this RPC endpoint usually accepts many different

message types, and uses some sort of dispatcher to route the message so it can be processed correctly.

REST (standing for REpresentational State Transfer) in contrast is a style of designing web services that

is modelled on the human web sites. Rather than expose a single endpoint, it exposes multiple endpoints.

And these endpoints don't represent verbs, they represent things (or nouns). But REST goes further than

this, because it also restricts what we can do with those resources to the standard HTTP verbs: GET (read),

PUT (update), DELETE (er, delete) and POST (invoke, or change in some way). The first three of these

are idempotent (can be invoked multiple times with no side effects). This is an important characteristic for

building scalable systems, and is not one that the RPC approach towards web services supports at all well.

What happens if we perform an HTTP GET on a resource? Well, we get a representation of that resource.

REST doesn't mandate what that representation is, but typical choices are JSON, XHTML or a custom

XML dialect. However, what REST does emphasise is that these resources should be linked together,

again analogous to the way that the human web works with hyperlinks.

So REST is much more closely associated with the web - and HTTP in particular - than WS-* -style web

services ever were. But - so the thinking goes - the vast majority of web services are deployed over the

web, so why disregard the web's semantics?

Introduction Introducing Restful Objects

2

For much more on the design principles and philosophy behind REST, you might want to read Richardson

& Ruby's RESTful Web Services.

1.2. Introducing Restful Objects

As already stated, Restful Objects is a Naked Objects viewer implementation to expose a domain model

using REST. That is, the resources are the actual domain objects, or - in some cases - a class member of

one of those objects. The following table shows the resources exposed:

Table 1.1. Verbs by Resources

Verb \ Resource Object Property Collection Action

GET current state of all

properties

n/a current contents n/a

PUT create set add to n/a

DELETE remove clear remove from n/a

POST n/a n/a n/a invoke

Restul Objects exposes a URL for each of the columns. So, for example:

• a Customer instance id=12345 might be exposed as http://localhost:8080/object/CUS|

12345, where "CUS|12345" is the (string representation of) the internal Naked Objects object identifier

(or Oid) that uniquely identifies the domain object. Performing a GET on this would list all of the

properties of the Customer.

• the orders collection for this same Customer would be exposed as http://localhost:8080/

object/CUS|12345/collection/orders. Performing a GET on this would list (links to) the

contents of the collection.

So much for interacting with the resources, but what of their representation? Well, (following the

suggestion in Richardson & Ruby's book) Restful Objects renders the domain objects using XHTML.

This gives us a natural way to express links between resources: we just use hyperlinks using the tag. It also means that we can inspect the domain objects from an web browser. For

example, here's Firefox displaying the resource representing an EmployeeRepository (part of of the

example claims application that is in the Naked Objects Maven download):

http://oreilly.com/catalog/9780596529260

Introduction Limitations of REST

Restful Objects 1.0 Users Guide (0.1) 3

In fact, Restful Objects also serves up a smidgeon of Javascript as well, to allow the web browser to

perform PUT and DELETE as well as the usual GET and POST. This won't be needed by your own

custom written web apps, of course. (It also won't be needed once XHTML 5 - with its support for these

additional HTTP verbs - becomes mainstream).

Restful Objects itself is implemented using JBoss RestEasy.

1.3. Limitations of REST

Because REST is newer than the original WS-*-style services, it currently lacks some supporting features.

For example, some of the supporting WS-* specifications deal with such things as security credentials

and transaction propagation. At the time of writing REST is yet to gain these sorts of additional support.

That said, Restful Objects provides some basic support for security, however.

http://jboss.org/resteasy

5

Chapter 2

Using Restful Objects in Prototypes

Exposing a RESTful domain model with Restful Objects is really pretty straightforward; we just need to

boot Naked Objects to use the Restful Objects' viewer rather than the DnD viewer or HTML viewer that

comes out-of-the-box. That means adding references to the POM, and the running with the appropriate

command line flags.

If you ran the Naked Objects archetype then you'll have a Maven parent module with a number of child

modules:

xxx/pom.xml

 xxx-dom/pom.xml # domain object model

 xxx-fixture/pom.xml # fixtures for seeding object store

 xxx-service/pom.xml # in-memory object store implementations of repositories

 xxx-commandline/pom.xml # for deploying as a commandline, also for prototyping

 xxx-webapp/pom.xml # for deploying as a webapp

The instructions here assume this directory structure.

2.1. Parent Module

In the parent module, first add in a <properties> section to specify the version of Restful Objects. This

will transitively bring in any dependencies:

<properties>

 <restfulobjects.version>1.0.0</restfulobjects.version> <!-- or whatever -->

</properties>

Then, add in references to the Restful Objects' applib and viewer modules to the

<dependencyManagement>:

<dependencyManagement>

 <dependencies>

 ...

 <dependency>

 <groupId>org.starobjects.restful</groupId>

 <artifactId>applib</artifactId>

 <version>${restfulobjects.version}</version>

 </dependency>

Using Restful Objects in Prototypes CommandLine Module

6

 <dependency>

 <groupId>org.starobjects.restful</groupId>

 <artifactId>viewer</artifactId>

 <version>${restfulobjects.version}</version>

 </dependency>

 ...

 </dependencies>

</dependencyManagement>

Note that an alternate approach for setting up dependencies is to have the parent module inherit from

org.starobjects.restful:release. Doing it this way means that it isn't necessary to add entries

to <dependencyManagement> because they are inherited. However, Maven2 does only allow a single

parent, so this may not be an option for you if you want to use some other POM as your parent.

2.2. CommandLine Module

When prototyping we run the viewer from the command line (rather than deploying to a full webapp, a

topic we cover in Chapter 5, Deploying Restful Objects Webapps). We therefore need to add a reference

to the viewer in the commandline project's pom.xml:

<dependencies>

 ...

 <dependency>

 <groupId>org.starobjects.restful</groupId>

 <artifactId>viewer</artifactId>

 <version>${restfulobjects.version}</version>

 </dependency>

 ...

</dependencies>

2.3. Launch Configuration

To run using the Restul Viewer, we use the standard commandline bootstrapper

org.nakedobjects.runtime.NakedObjects (as used for DnD and HTML viewer in prototype

mode). Run with the arguments:

• --type exploration

• --viewer org.starobjects.restful.viewer.embedded.RestfulViewerInstaller

This sets up Jetty to run with the Restful Objects servlets and filters.

2.4. Testing the Viewer

Boot up Firefox and browse to http://localhost:8080. You should see links to access the services; these

are (representations of) the registered services (typically repositories) in nakedobjects.properties

configuration file.

Note

Firefox is currently the only supported web browser for testing in this way.

http://localhost:8080

7

Chapter 3

Resources

Understanding how to interact with resources and how to interpret their representations is central to the

RESTful approach. This chapter describes in detail the resources that are available; in effect, the API for

using domain objects exposed using Restful Objects.

In order to invoke a HTTP method on a resource, the URL must be constructed correctly. After that, the

client code then needs to handle the response.

Each of the resources is defined as interfaces annotated using javax.ws.rs (JAX-RS) annotations. JAX-

RS is the Java API for Restful Web Services, part of Java EE 6. Its annotations are used by JAX-RS

libraries such as RestEasy, or Jersey (the latter is the reference implementation). These libraries expose

the resources as endpoints and route requests through to server-side methods (implemented by Restful

Objects).

As such, we can use these interfaces as a way of describing the resources provided by Restful Objects.

Let's go through each in turn.

3.1. HomePageResource

To start with, we have HomePageResource:

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

public interface HomePageResource {

 @GET

 @Produces({"application/xhtml+xml", "text/html"})

 public String resources();

}

Because there is no @javax.ws.rs.Path annotation, this in effect says that the root URL "/" (eg http://

localhost:8080/) is a valid resource. What you'll get back is an XHTML page that identifies the current

user (in exploration mode this is always hard-coded), and then lists the resources available: the services

(ie repositories), the specifications (metamodel), and details on the current user.

https://jersey.dev.java.net/
http://localhost:8080/
http://localhost:8080/

Resources HomePageResource

8

These blocks are always present on every page.

Meanwhile the raw XHTML - what your client code must parse - looks something like:

<?xml version="1.0"?>

<html>

 <head><title>Home Page</title></head>

 <body id="body">

 <div>

 <p>Logged in as</p>

 <ul class="nof-session">

 sven

 </div>

 <div class="nof-section">

 <p class="nof-section">Resources</p>

 <ul class="nof-resources">

 Services

 Specifications (MetaModel)

 User (Security)

 </div>

 </body>

</html>

Resources Services Resource

Restful Objects 1.0 Users Guide (0.1) 9

Note the use of class attributes to distinguish the different types of properties. For example, the XPath

expression //a[@class='nof-resource']/@href will return the links to all resources available. One of these

- /services - is the list of services, so lets look at that next.

Note

Depending on feedback, the format of the XHTML may evolve in the future, eg to add in

further class attributes.

3.2. Services Resource

The /services link indicated in Section 3.1, “HomePageResource” corresponds to the

ServicesResource:

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

public interface ServicesResource {

 @GET

 @Produces({"application/xhtml+xml", "text/html"})

 @Path("/")

 public String services();

}

The implementation of this interface in Restful Objects viewer (ServicesResourceImpl) also defines

a @Path("/services") for the class as a whole. This therefore defines a URL in the form /services

supporting the GET method.

Note

I believe that the @Path("/services") annotation should reside on the interface, not the

implementation. This seems to be a limitation with RestEasy, the underlying library used by

Restful Objects. Certainly for RestEasy 1.0.2 and also 1.1-rc2 this did not work, however.

Here's the resource that's returned, as shown in a browser:

Resources Object Resource

10

The first two sections are the same; what's new is the list of services, corresponding to the registered

services in nakedobjects.properties. The XHTML for this is:

<?xml version="1.0"?>

<html>

 <head><title>Services</title></head>

 <body id="body">

 ...

 <div class="nof-section">

 <p class="nof-section">Services</p>

 <ul class="nof-services">

 Employees

 Claims

 </div>

 </body>

</html>

Again, we can use XPath to pull back the resources:

• //a[@class='nof-service']/@href will return the hyperlinks to the object resources representing these

services, in the form /object/OID.

And let's look at object resources next.

3.3. Object Resource

The /object link indicated above corresponds to the ObjectResource interface. This defines the set of

interactions described in Section 1.2, “Introducing Restful Objects”:

Resources Objects

Restful Objects 1.0 Users Guide (0.1) 11

import java.io.InputStream;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.QueryParam;

public interface ObjectResource {

 ...

}

The implementation of this interface in Restful Objects viewer (ObjectResourceImpl) also defines a

@Path("/object") for the class as a whole. All URL paths are therefore prefixed /object/{oid}.

Note

I believe that the @Path annotation should reside on the interface, not the implementation.

This seems to be a limitation with RestEasy 1.0.2, the underlying library used by Restful

Objects.

Let's break it down into sections, starting with the object.

Objects

The /objects/OID resource corresponds to the ObjectResource interface:

...

public interface ObjectResource {

 @GET

 @Path("/{oid}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public String object(

 @PathParam("oid") final String oidStr);

 ...

}

This defines /object/{oid} as a URL supporting GET. Here's what calling this method gives for a repository

object:

Resources Objects

12

As ever, we get the initial "logged in" and "resources" sections. The remaining sections are details about

this object, providing its title, the properties, the list of collections and then the actions. For repositories,

the only items of significance here are the actions.

Let's also look at a typical domain object:

Resources Objects

Restful Objects 1.0 Users Guide (0.1) 13

The structure is the same, but here there are properties and collections, as well as actions. Let's look at

the XHTML that represents this domain object, starting with the title:

The raw XHTML looks like:

<div>

 <table border="1">

 <tr>

 <td>Object title</td>

 <td class="nof-title">

 <p>New - 2009-11-28</p>

 </td>

 </tr>

 <tr>

Resources Objects

14

 <td>OID</td>

 <td class="nof-oid">

 OID:C

 </td>

 </tr>

 <tr>

 <td>Specification</td>

 <td class="nof-specification">

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim"

 rel="spec" rev="object" class="nof-specification">

 org.nakedobjects.examples.claims.dom.claim.Claim

 </td>

 </tr>

 </table>

</div>

Some useful XPath expressions:

• //td[@class='nof-title']/p/text() will return the title

• //td[@class='nof-oid']/a/text() is the OID (as a string)

• //td[@class='nof-specification']/a/@href is a link the (resource repreenting the) specification of this

object, in the form /specs/{fullyQualifiedClassName}

Next up is the properties section:

The raw XHTML (abbreviated; just the first property is listed) is:

<div class="nof-properties">

 <p class="nof-properties">Properties</p>

 <table border="1">

 <tr>

 <th>Name</th>

 <th>Type</th>

 <th>Hidden</th>

 <th>Access</th>

 <th>Disabled</th>

 <th>Disabled Reason</th>

 <th>Parseable</th>

 <th>Modify</th>

 <th>Clear</th>

 <th>Invalid Reason</th>

 </tr>

 <tr>

Resources Objects

Restful Objects 1.0 Users Guide (0.1) 15

 <td>

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/property/

description"

 rel="propertySpec" rev="property" class="nof-property">Description

 </td>

 <td>

 <a href="/specs/java.lang.String" rel="propertyTypeSpec"

 rev="property" class="nof-property">java.lang.String

 </td>

 <td>

 <p class="nof-visible">N</p>

 </td>

 <td>

 <p class="nof-property">Meeting at clients</p>

 </td>

 <td>

 <p class="nof-usable">N</p>

 </td>

 <td>

 <p />

 </td>

 <td>

 <p class="nof-visible">N</p>

 </td>

 <td>

 <div class="nof-property">

 <form name="property-description">

 <input type="value" name="proposedValue" />

 <input type="button" value="Set"

 onclick="modifyProperty("/object/

OID:C","description",proposedValue.value);" />

 </form>

 </div>

 </td>

 <td>

 <div class="nof-property">

 <form name="property-description">

 <input type="button" value="Clear"

 onclick="clearProperty("/object/OID:C","description");" />

 </form>

 </div>

 </td>

 <td>

 <p class="nof-valid" id="property-invalid-description" />

 </td>

 </tr>

 ...

 </table>

</div>

Some useful XPath expressions are:

• //div[@class='nof-properties']//tr/td[1]/a/text() returns the property names

• //div[@class='nof-properties']//tr/td[2]/a/@href returns links to (resources representing the) property

types, in the form /specs/{fullyQualifiedClassName}

• //div[@class='nof-properties']//tr/td[3]/p/text() returns whether properties are invisible (N=not

invisible)

• //div[@class='nof-properties']//tr/td[4] returns the <td> table cells containing the values; the values

will either be <p> (values) or (references)

and so on.

Resources Objects

16

The "modify" and "clear" columns bear further description. These are used to perform PUTs and

DELETEs on the resources that represent the property. Because XHTML4 does not support PUT and

DELETE verbs in forms, they actually call Javascript fragments to do these calls. See the section called

“Properties” for further details of the format of these requests.

The values that are entered into modify for value properties is the parseable text form (eg TRUE for a

boolean); for reference properties it is the OID.

If a property is disabled, then the "disabled reason" column will indicate why. If a property is enabled but

the proposed property value is invalid, then the "invalid reason" will indicate why. Note that it takes a

round-trip to do this validation, because the domain objects are not in any sense serialized into the browser.

Let's now look at the collections section:

The raw XHTML is:

<div class="nof-collections">

 <p class="nof-collections">Collections</p>

 <table border="1">

 <tr>

 <th>Name</th>

 <th>Type</th>

 <th>Hidden</th>

 <th>Disabled</th>

 <th>Access</th>

 <th>AddTo</th>

 <th>RemoveFrom</th>

 <th>Invalid Reason</th>

 </tr>

 <tr>

 <td>

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/collection/items"

 rel="propertySpec" rev="collection" class="nof-collection">

 Items

 </td>

 <td>

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.ClaimItem"

 rel="propertyTypeSpec" rev="property" class="nof-property">

 org.nakedobjects.examples.claims.dom.claim.ClaimItem

 </td>

 <td>

 <p class="nof-visible">N</p>

 </td>

 <td>

 <p class="nof-usable">N</p>

 </td>

 <td>

 <a href="/object/OID:C/collection/items"

 rel="collection" rev="nakedObject" class="nof-collection">items

 </td>

 <td>

Resources Objects

Restful Objects 1.0 Users Guide (0.1) 17

 <div class="nof-collection">

 <form name="collection-items">

 <input type="value" name="proposedValue" />

 <input type="button" value="Add"

 onclick="addToCollection("/object/OID:C", "items",

 proposedValue.value);" />

 </form>

 </div>

 </td>

 <td>

 <div class="nof-collection">

 <form name="collection-items">

 <input type="value" name="proposedValue" />

 <input type="button" value="Remove"

 onclick="removeFromCollection("/object/OID:C", "items",

 proposedValue.value);" />

 </form>

 </div>

 </td>

 <td>

 <p class="nof-valid" id="collection-invalid-items" />

 </td>

 </tr>

 </table>

</div>

In this particular case there is only a single collection, but in general there could be many.

Some useful XPath expressions are:

• //div[@class='nof-collections']//tr/td[1]/a/text() returns the collection names

• //div[@class='nof-properties']//tr/td[2]/a/@href returns links to (resources representing the) type of

the collection, in the form /specs/{fullyQualifiedClassName}

• //div[@class='nof-properties']//tr/td[3]/p/text() returns whether collections are invisible (N=not

invisible)

• //div[@class='nof-collections']//tr/td[5]/a/@href returns a link to a resource representing the contents

of the collection, in the form /object/{oid}/collection/{collectionId}

and so on. Note that the table doesn't show the contents of each collection, instead it gives us a link to

access the contents

Similar to properties, the "addTo" and "removeFrom" columns are used to submit PUT or DELETEs

against the collection resource. See the section called “Collections” for more details. The arguments

provided are the OIDs of objects in the collection.

Finally, let's look at actions:

Resources Objects

18

The raw XHTML (abbreviated; just the first action is listed) is:

<div class="nof-actions">

 <p class="nof-actions">Actions</p>

 <table border="1">

 <tr>

 <th>Name</th>

 <th>Type</th>

 <th>Type</th>

 <th># Params</th>

 <th>Hidden</th>

 <th>Disabled</th>

 <th>Disabled Reason</th>

 <th>Real Target</th>

 <th>Invoke</th>

 </tr>

 <tr>

 <td>

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/action/

addItem(int,double,java.lang.String)"

 rel="actionSpec" rev="action" class="nof-action">Add Item

 </td>

 <td>

 <p class="nof-action">USER</p>

 </td>

 <td>

 <a href="/specs/void" rel="actionReturnTypeSpec" rev="action" class="nof-

action">void

 </td>

 <td>

 <p class="nof-action">3</p>

 </td>

 <td>

 <p class="nof-visible">N</p>

 </td>

 <td>

 <p class="nof-usable">N</p>

 </td>

 <td>

 <p />

 </td>

 <td>

 OID:C</

a>

 </td>

 <td>

 <div class="nof-action">

 <form name="action-addItem(int,double,java.lang.String)" method="POST"

Resources Objects

Restful Objects 1.0 Users Guide (0.1) 19

 action="/object/OID:C/action/addItem(int,double,java.lang.String)">

 <p>Days since</p>

 <input type="value" name="arg0" />

 <p>Amount</p>

 <input type="value" name="arg1" />

 <p>Description</p>

 <input type="value" name="arg2" />

 <input type="submit" value="Invoke" />

 </form>

 </div>

 </td>

 </tr>

 ...

 </table>

</div>

Some useful XPath expressions are:

• //div[@class='nof-actions']//tr/td[1]/a/text() returns the names of each action

• //div[@class='nof-actions']//tr/td[3]/a/@href returns links to (resources representing the) type of the

returned result of each action, in the form /specs/{fullyQualifiedClassName}

• //div[@class='nof-actions']//tr/td[5]/p/text() returns whether each action is invisible or not (N=not

invisible)

• //div[@class='nof-actions']//tr/td[8]/a/text() returns the OID of the real target; more on this in a

moment

• //div[@class='nof-actions']//tr/td[9]//form returns a form to invoke the action using POST

and so on. Note that the table doesn't show the contents of each collection, instead it gives us a link to

access the contents

There is no javascript calls this time; invoking actions is just a POST. The arguments provided are the

same as for properties: text for parseable values, or the OIDs of objects for references.

The "realTarget" column is provided to support contributed actions. For example, here are the

actions listed for a domain object (Employee) where the claimsFor() action is contributed (by the

ClaimsRepository):

In the DnD viewer this action would appear to reside on the domain object. In reality though the action

resides on the repository, taking a single argument - the domain object (Employee).

And that concludes our run-through of the GET verb for object resources. Phew!

Resources Properties

20

Note

PUT and DELETE verbs for object resources have not yet been implemented.

Properties

The next set of resources exposed by ObjectResource are those specific to properties:

...

public interface ObjectResource {

 ...

 @PUT

 @Path("/{oid}/property/{propertyId}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public String modifyProperty(

 @PathParam("oid") final String oidStr,

 @PathParam("propertyId") final String propertyId,

 @QueryParam("proposedValue") final String proposedValue);

 @DELETE

 @Path("/{oid}/property/{propertyId}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public String clearProperty(

 @PathParam("oid") final String oidStr,

 @PathParam("propertyId") final String propertyId);

 ...

}

This defines /object/{oid}/property/{propertyId} as the URL supporting:

• PUT, to change the value of a property; the proposedValue should be a query parameter to this URL;

• DELETE, to clear the property

Calling these will first validate the change, and if accepted apply the change:

• If the validation fails, then an exception will be thrown. This translates to a response with error code

in the range [400, 500), and with a response header of "nof-reason".

• If the validation succeeds, the returned XHTML is the object's title only.

Collections

The next set of resources exposed by ObjectResource are those for collections:

...

public interface ObjectResource {

 ...

 @GET

 @Path("/{oid}/collection/{collectionId}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public String accessCollection(

 @PathParam("oid") final String oidStr,

 @PathParam("collectionId") final String collectionId);

 @PUT

 @Path("/{oid}/collection/{collectionId}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public String addToCollection(

 @PathParam("oid") final String oidStr,

 @PathParam("collectionId") final String collectionId,

 @QueryParam("proposedValue") final String proposedValueOidStr);

Resources Collections

Restful Objects 1.0 Users Guide (0.1) 21

 @DELETE

 @Path("/{oid}/collection/{collectionId}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public String removeFromCollection(

 @PathParam("oid") final String oidStr,

 @PathParam("collectionId") final String collectionId,

 @QueryParam("proposedValue") final String proposedValueOidStr);

 ...

}

This defines /object/{oid}/property/{collectionId} as a URL supporting:

• GET, to read the contents of this collection.

• PUT, to add an item to the collection; the proposedValue should be a query parameter to this URL

and contain an OID;

• DELETE, to remove an item to the collection; the proposedValue should be a query parameter to this

URL and contain an OID;

The handling of PUT and the DELETE is similar to that of properties. The proposed value is validated

first, and if invalid then a exception is thrown resulting in a response in range [400, 500) with a response

header of "nof-reason". Otherwise the object's title and OID are returned.

Note

We could perhaps change this to return the new contents of the collection, ie as if a GET

had been performed?

A GET meanwhile returns the following:

The raw XHTML for the contents part of this is:

<div class="nof-collection">

 <p class="nof-collection">items</p>

Resources Actions

22

 <ul class="nof-collection">

 Car parking

 Reading - London (return)

</div>

Useful XPath here is:

• //div[@class='nof-collection']//li/a/@href to return the links to object resources in the collection

Actions

The final set of resources exposed by ObjectResource is for actions:

...

public interface ObjectResource {

 ...

 @POST

 @Path("/{oid}/action/{actionId}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public String invokeAction(

 @PathParam("oid") final String oidStr,

 @PathParam("actionId") final String actionId,

 final InputStream body);

 ...

}

This defines /object/{oid}/property/{actionId} as a URL supporting a POST. What's noteworthy here is

the last argument, an java.io.InputStream. This provides a handle to the POST's input stream which

contains the parameter/argument pairs.

The parameters should be named arg0, arg1, arg2 and so on, with the parameter value representing the

argument. What this value is will depend on whether the parameter's type is a reference (entity) type or

a parseable value type:

• for reference types, the value should be the (string representation of the) OID of the entity

• for value types, the value should be in parseable string format. In practical terms, use the same

string format as would work in the the DnD viewer. (To be precise, it's the format understood by the

ParseableFacet for the parameter's type)

For example, for an action findCustomers(registeredDate, CustomerType) then the parameters would be

something like:

• arg0=20090103

• arg1=CTP|12

where 20090103 is 3-Jan-2009 in parseable format, and CTP|12 is the OID (as assigned by the object

store) for CustomerType with ID=12.

When an action is invoked, the response always includes the OID and title of the object on which the

action was invoked. In addition:

Resources Metamodel (specs) Resource

Restful Objects 1.0 Users Guide (0.1) 23

• if the action returned an object, then the response will include a link to the object

Note

We could perhaps change this to return the GET of the returned object?

• if the action returned a collection of objects, then the response will return a list of links to the objects

• if the action returned void; then nothing further is added to the response

3.4. Metamodel (specs) Resource

The /specs/{fullyQualifedClassName} links indicated in several places in the representations produced by

ObjectResource corresponds to the SpecsResource:

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

public interface SpecsResource {

 ...

}

The implementation of this interface in Restful Objects viewer (SpecsResourceImpl) also defines a

@Path("/specs") for the class as a whole. This therefore defines a URL in the form /services supporting

the GET method.

Note

I believe that the @Path annotation should reside on the interface, not the implementation.

This seems to be a limitation with RestEasy 1.0.2, the underlying library used by Restful

Objects.

The purpose of the /specs/ family of resources is to describe the structure of the domain objects, ie expose

a metamodel for the domain objects. Client-side applications might choose to iterate through all the specs

resources first and cache them; this would then simplify the task of rendering domain objects.

Again, let's break the resources provided by SpecsResource into sections.

All Classes

First up, we have a resource to list all classes (or specs):

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

public interface SpecsResource {

 @GET

 @Path("/")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specs();

Resources All Classes

24

 ...

}

This defines /specs as a URL accepting GET. This returns the following:

The raw XHTML produced (abbreviated) is:

<div class="nof-section">

 <p class="nof-section">Specifications</p>

 <ul class="nof-specifications">

 ...

 <a href="/specs/int" rel="spec" rev="specs"

 class="nof-specification">int

 ...

 <a href="/specs/java.lang.String" rel="spec" rev="specs"

 class="nof-specification">java.lang.String

 ...

 <a href="/specs/org.nakedobjects.applib.value.Date" rel="spec" rev="specs"

 class="nof-specification">org.nakedobjects.applib.value.Date

Resources Class (NakedObjectSpecification)

Restful Objects 1.0 Users Guide (0.1) 25

 ..

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim" rel="spec"

 rev="specs"

 class="nof-specification">org.nakedobjects.examples.claims.dom.claim.Claim

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.ClaimItem" rel="spec"

 rev="specs"

 class="nof-specification">org.nakedobjects.examples.claims.dom.claim.ClaimItem

 ...

 <a href="/specs/void" rel="spec" rev="specs"

 class="nof-specification">void

</div>

Useful XPath expressions:

• //a[@class='nof-specification']/@href will give links to resources for all specifications

Let's look at an individual specification next.

Class (NakedObjectSpecification)

The resource for a specification is:

...

public interface SpecsResource {

 ...

 @GET

 @Path("/{specFullName}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String spec(

 @PathParam("specFullName") final String specFullName);

 ...

}

This defines /specs/{specFullName} as a URL accepting GET. This returns:

Resources Class (NakedObjectSpecification)

26

The raw XHTML for this breaks into five regions.

First (abbreviated) we have the facets, which define additional semantics to the holder (in this case, the

spec):

<div class="nof-facets">

 <p class="nof-facets">Facets</p>

 <table border="1">

 <tr>

 <th>FacetType</th>

 <th>Implementation</th>

 ...

 </tr>

 ...

 <tr>

 <td>

 <a href="org.nakedobjects.examples.claims.dom.claim.Claim/facet/

org.nakedobjects.metamodel.facets.object.ident.plural.PluralFacet"

 rel="facet" rev="spec" class="nof-

facet">org.nakedobjects.metamodel.facets.object.ident.plural.PluralFacet

 </td>

 <td>

 <p>org.nakedobjects.metamodel.facets.object.ident.plural.PluralFacetInferred</p>

 </td>

 ...

 </tr>

 ...

 <tr>

 <td>

 <a href="org.nakedobjects.examples.claims.dom.claim.Claim/facet/

org.nakedobjects.metamodel.facets.naming.named.NamedFacet"

 rel="facet" rev="spec" class="nof-

facet">org.nakedobjects.metamodel.facets.naming.named.NamedFacet

 </td>

 <td>

 <p>org.nakedobjects.metamodel.facets.naming.named.NamedFacetInferred</p>

Resources Class (NakedObjectSpecification)

Restful Objects 1.0 Users Guide (0.1) 27

 </td>

 ...

 </tr>

 ...

 <tr>

 <td>

 <a href="org.nakedobjects.examples.claims.dom.claim.Claim/facet/

org.nakedobjects.metamodel.facets.naming.describedas.DescribedAsFacet" rel="facet" rev="spec"

 class="nof-facet">org.nakedobjects.metamodel.facets.naming.describedas.DescribedAsFacet

 </td>

 <td>

 <p>org.nakedobjects.metamodel.facets.naming.describedas.DescribedAsFacetNone</p>

 </td>

 ...

 </tr>

 ...

 </table>

</div>

Many of the facets listed will not be that relevant to us, but some - such as the singular name of

a class (NamedFacet), the plural name of a class (PluralFacet) and the description of a class

(DescribedAsFacet) will be useful for presentation purposes. It is also possible to define additional

facets that might be relevant to your own client-side application. For example, if you were writing a

mash-up GUI and wanted to render an Address domain object within a map, you might want to define

a MapCoordinatesFacet.

Note

Actually, this isn't quite true; there is currently no way to evaluate a facet for a particular

domain object instance.

As ever, we can use XPath to pull out values:

• //div[@class='nof-facets']//

a[.='org.nakedobjects.metamodel.facets.object.ident.plural.PluralFacet']/@href will pull out the link

for the PluralFacet, if there is one.

Next we have the (definition of the) properties for a spec:

<div class="nof-properties">

 <p class="nof-properties">Properties</p>

 <ul class="nof-properties">

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/property/description"

 rel="property" rev="spec" class="nof-property">description

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/property/date"

 rel="property" rev="spec" class="nof-property">date

 ...

</div>

Useful XPath queries here:

• //div[@class='nof-properties']//a/text() returns the property names

• //div[@class='nof-properties']//a/@href returns links to the property definitions (see the section called

“Class Members (NakedObjectMember)”)

Similarly, we have collections:

Resources Class Members (NakedObjectMember)

28

<div class="nof-collections">

 <p class="nof-collections">Collections</p>

 <ul class="nof-collections">

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/collection/items"

 rel="collection" rev="spec" class="nof-collection">items

 ...

</div>

Useful XPath queries here:

• //div[@class='nof-collections']//a/text() returns the collection names

• //div[@class='nof-collections']//a/@href returns links to the collection definitions (see the section

called “Class Members (NakedObjectMember)”)

Lastly, the actions. These fall into three groups: regular (USER) actions, debug actions (annotated with

@Debug) and exploration actions (that are available only in exploration mode):

<div class="nof-actions">

 <p class="nof-actions">USER actions</p>

 <ul class="nof-actions">

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/action/

addItem(int,double,java.lang.String)"

 rel="action" rev="spec" class="nof-action">addItem(int,double,java.lang.String)

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/action/

submit(org.nakedobjects.examples.claims.dom.claim.Approver)"

 rel="action" rev="spec" class="nof-

action">submit(org.nakedobjects.examples.claims.dom.claim.Approver)

</div>

<div class="nof-actions">

 <p class="nof-actions">DEBUG actions</p>

 <ul class="nof-actions" />

</div>

<div class="nof-actions">

 <p class="nof-actions">EXPLORATION actions</p>

 <ul class="nof-actions" />

</div>

Useful XPath queries here:

• //div[@class='nof-actions' and p/text()='USER actions']//a/@href returns links to the regular user

actions

• //div[@class='nof-actions' and p/text()='DEBUG actions']//a/@href returns links to the debug actions

• //div[@class='nof-actions' and p/text()='EXPLORATION actions']//a/@href returns links to the

exploration actions

Class Members (NakedObjectMember)

The next set of resources provided by SpecsResource are for the individual class members (properties,

collections or actions):

...

public interface SpecsResource {

Resources Class Members (NakedObjectMember)

Restful Objects 1.0 Users Guide (0.1) 29

 ...

 @GET

 @Path("/{specFullName}/property/{propertyName}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specProperty(

 @PathParam("specFullName") final String specFullName,

 @PathParam("propertyName") final String propertyName);

 @GET

 @Path("/{specFullName}/collection/{collectionName}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specCollection(

 @PathParam("specFullName") final String specFullName,

 @PathParam("collectionName") final String collectionName);

 @GET

 @Path("/{specFullName}/action/{actionId}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specAction(

 @PathParam("specFullName") final String specFullName,

 @PathParam("actionId") final String actionId);

 ...

}

This defines the following URLs all accepting GET:

• /specs/{specFullName}/property/{propertyName} for a resource representing a property definition

• /specs/{specFullName}/collection/{propertyName} for a resource representing a collection definition

• /specs/{specFullName}/action/{actionId} for a resource representing a action definition

Each of these resources generates a similar representation, listing the facets for that class member. For

example, here is the resource for a property spec:

The raw XHTML (abbreviated) is:

<div>

 <p>Owners</p>

 <ul class="nof-specification">

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim" rel="spec"

 rev="property" class="nof-specification">owning spec

Resources Class Members (NakedObjectMember)

30

</div>

<div class="nof-facets">

 <p class="nof-facets">Facets</p>

 <table border="1">

 <tr>

 <th>FacetType</th>

 <th>Implementation</th>

 ...

 </tr>

 <tr>

 <td>

 <a href="description/facet/

org.nakedobjects.metamodel.facets.propparam.typicallength.TypicalLengthFacet" rel="facet"

 rev="spec" class="nof-

facet">org.nakedobjects.metamodel.facets.propparam.typicallength.TypicalLengthFacet

 </td>

 <td>

 <p>org.nakedobjects.metamodel.facets.propparam.typicallength.TypicalLengthFacetDerivedFromType</

p>

 </td>

 ...

 </tr>

 ...

 <tr>

 <td>

 <a href="description/facet/

org.nakedobjects.metamodel.facets.ordering.memberorder.MemberOrderFacet" rel="facet"

 rev="spec" class="nof-

facet">org.nakedobjects.metamodel.facets.ordering.memberorder.MemberOrderFacet

 </td>

 <td>

 <p>org.nakedobjects.metamodel.facets.ordering.memberorder.MemberOrderFacetAnnotation</

p>

 </td>

 ...

 </tr>

 <tr>

 <td>

 <a href="description/facet/

org.nakedobjects.metamodel.facets.propparam.validate.mandatory.MandatoryFacet" rel="facet"

 rev="spec" class="nof-

facet">org.nakedobjects.metamodel.facets.propparam.validate.mandatory.MandatoryFacet

 </td>

 <td>

 <p>org.nakedobjects.metamodel.facets.propparam.validate.mandatory.MandatoryFacetDefault</p>

 </td>

 ...

 </tr>

 ...

 </table>

</div>

As for specifications themselves (see the section called “Class (NakedObjectSpecification)”), many

of the facets will not be that relevant. However, NamedFacet and DescribedAsFacet mentioned earlier

would be, for presentation purposes. In addition, for properties the TypicalLengthFacet can be used

as a hint for a field in the UI, and MemberOrderFacet annotation can be used to indicate the order of

fields in the UI. The MandatoryFacet can be used to indicate mandatory properties.

As ever, XPath can be used to pull out information from the resource.

Resources Facets

Restful Objects 1.0 Users Guide (0.1) 31

Note

Although actions produce a similar output, they ought to be extended to provide information

on action parameters; both how many parameters there are, and also facets associated with

those parameters.

Facets

A facet resource allows the value of a facet to be inspected. The resources provided by SpecsResource

are:

...

public interface SpecsResource {

 ...

 @GET

 @Path("/{specFullName}/facet/{facetType}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specFacet(

 @PathParam("specFullName") final String specFullName,

 @PathParam("facetType") final String facetTypeName);

 @GET

 @Path("/{specFullName}/property/{propertyName}/facet/{facetType}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specPropertyFacet(

 @PathParam("specFullName") final String specFullName,

 @PathParam("propertyName") final String propertyName,

 @PathParam("facetType") final String facetTypeName);

 @GET

 @Path("/{specFullName}/collection/{collectionName}/facet/{facetType}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specCollectionFacet(

 @PathParam("specFullName") final String specFullName,

 @PathParam("collectionName") final String collectionName,

 @PathParam("facetType") final String facetTypeName);

 @GET

 @Path("/{specFullName}/action/{actionId}/facet/{facetType}")

 @Produces({ "application/xhtml+xml", "text/html" })

 public abstract String specActionFacet(

 @PathParam("specFullName") final String specFullName,

 @PathParam("actionId") final String actionId,

 @PathParam("facetType") final String facetTypeName);

 ...

}

This defines the following URLs all accepting GET:

• /specs/{specFullName}/facet/{facetType} for a facet on a spec

• /specs/{specFullName}/property/{propertyName}/facet/{facetType} for a facet on a property

• /specs/{specFullName}/collection/{propertyName}/facet/{facetType} for a facet on a collection

• /specs/{specFullName}/action/{actionId}/facet/{facetType} for a facet on an action

Note

In addition we need a resource to allow the facets of an actions parameter to be queried.

Resources Facets

32

Note

(Mentioned elsewhere), we also need to provide the ability to evaluate facets per

instance. Although many facets are per class, some (such as TitleFacet) will

vary by instance. This will (presumably) need some additional resource methods (eg

specActionFacetFor(...)) that take an oid as a parameter.

Each of these resources generates a similar representation, evaluating a facets for its facet holder. For

example, here is the resource for a property spec:

The raw XHTML (abbreviated) is:

<div>

 <p>Owners</p>

 <ul class="nof-properties">

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim" rel="owning spec"

 rev="spec" class="facet">

 org.nakedobjects.examples.claims.dom.claim.Claim

 <a href="/specs/org.nakedobjects.examples.claims.dom.claim.Claim/property/description"

 rel="owning property" rev="property" class="facet">

 description

</div>

<div class="nof-facet-elements">

 <p class="nof-facet-elements">Facet Elements</p>

 <dl class="nof-facet-elements">

 <dt>class</dt>

 <dd>class

 org.nakedobjects.metamodel.facets.propparam.typicallength.TypicalLengthFacetDerivedFromType</

dd>

Resources Security (user) Resource

Restful Objects 1.0 Users Guide (0.1) 33

 <dt>derived</dt>

 <dd>false</dd>

 <dt>facetHolder</dt>

 <dd>Reference Association

 [name="org.nakedobjects.examples.claims.dom.claim.Claim#description(),

 type=JavaSpecification@9c22ff[class=java.lang.String,type=Object,persistable=User

 Persistable,superclass=Object]]</dd>

 <dt>identified</dt>

 <dd>Reference Association

 [name="org.nakedobjects.examples.claims.dom.claim.Claim#description(),

 type=JavaSpecification@9c22ff[class=java.lang.String,type=Object,persistable=User

 Persistable,superclass=Object]]</dd>

 <dt>noop</dt>

 <dd>false</dd>

 <dt>underlyingFacet</dt>

 <dd>(null)</dd>

 </dl>

</div>

This representation is created by applying a JavaBean conventions on the facet (all getXxx() and

isXxx() methods exposed by the facet itself).

Note

We need a more general purpose mechanism to query facets. As can be seen, the above doesn't

actually expose the typical value of the facet, because the method we want is called value(),

not getValue().

Some XPath queries that might be useful are:

• //div[@class='nof-facet-elements']//dt[.='class']/following-sibling::dd[1] will return the <dd>

element corresponding to the 'class' <dt>

• //div[@class='nof-facet-elements']//dt[.='derived']/following-sibling::dd[1] will return the <dd>

element corresponding to the 'derived' <dt>d

3.5. Security (user) Resource

To finish up, the /user link indicated in Section 3.1, “HomePageResource” corresponds to the

UserResource:

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

public interface UserResource {

 @GET

 @Produces({ "application/xhtml+xml", "text/html" })

 public String user();

}

The implementation of this interface in Restful Objects viewer (UserResourceImpl) also defines a

@Path("/user") for the class as a whole. Taken together this therefore defines a URL in the form /

user supporting the GET method.

Resources Security (user) Resource

34

Note

I believe that the @Path("/user") annotation should reside on the interface, not the

implementation. This seems to be a limitation with RestEasy 1.0.2, the underlying library

used by Restful Objects.

Here's the resource that's returned, as shown in a browser:

The first section (as ever) lists the current user, while the final section lists out the roles for the current

user. The XHTML for this is:

<?xml version="1.0"?>

<html>

 <head><title>User</title></head>

 <body id="body">

 <div>

 <p>Logged in as</p>

 <ul class="nof-session">

 sven

 </div>

 ...

 <div class="nof-section">

 <p class="nof-section">Roles</p>

 <ul class="nof-roles">

 <p class="nof-role">role1</p>

 </div>

 </body>

</html>

Again, we can use XPath to pull back the resources:

Resources Security (user) Resource

Restful Objects 1.0 Users Guide (0.1) 35

• //a[@class="nof-user"]/text() returns the current user name

• //p[@class="nof-role"]/text() returns the role names

37

Chapter 4

Writing Client-side Applications

The point of Restful Objects is to provide our domain objects as RESTful resources so that they can be

used by any other client application. These applications can be written in any language; so long as they can

submit HTTP requests and can parse XHTML, they can interact with the resources provided by Restful

Objects.

That said, if you are writing Java applications, then Restful Objects provides an application library (applib)

to simplify the task. To reference this applib, add the following to your Maven pom's <dependencies>

section:

<properties>

 <restfulobjects.version>1.0.0</restfulobjects.version> <!-- OR WHATEVER -->

</properties>

<dependencies>

 ...

 <dependency>

 <groupId>org.starobjects.restful</groupId>

 <artifactId>applib</artifactId>

 <version>${restfulobjects.version}</version>

 </dependency>

 ...

</dependencies>

You then have a choice of approaches.

4.1. AbstractRestfulClient

To get you started you might want to use the adapter, AbstractRestfulClient, available in the Restful

Objects' applib. This exposes some of the HTTP methods, including GET and POST, and serves up

resources as XML documents (using Elliot Rusty Harold's XOM library). There is also a XomUtils class,

that provides some pretty-printing support and a couple of other helper methods.

http://www.xom.nu/

Writing Client-side Applications RestEasy's Client-side Framework

38

Note

AbstractRestfulClient is not particularly comprehensive (at the time of writing it

doesn't include support for PUT or DELETE, for example). It may well gain extra methods

in future releases, however.

4.2. RestEasy's Client-side Framework

Alternatively, you might want to look into JBoss RestEasy, which provides a client-side framework to

eliminate some of the boilerplate. This uses the resource interfaces (see Chapter 3, Resources) to create

client-side stubs.

Note

Due to a fact that @Path is annotated on the implementations - not the interfaces - of

ObjectResource, ServiceResource, SpecsResource and UserResource, it's possible

that this approach will not work until we upgrade the version of RestEasy.

http://www.jboss.org/file-access/default/members/resteasy/freezone/docs/1.0.2.GA/userguide/html_single/index.html#RESTEasy_Client_Framework

39

Chapter 5

Deploying Restful Objects Webapps

At some point you'll presumably want to deploy your domain object using Restful Objects as a webapp.

If you've used the Naked Objects archetype then it will have created a webapp project for you, with its

web.xml set up with the servlets and filters for the HTML viewer. We can use this as the basis for Restful

Objects' configuration. (In principle, the web.xml could support both the HTML viewer and Restful

Objects. This chapter assumes you only want to expose the latter interface, however).

In addition, you'll need to decide on the authentication mechanism. Restful Objects comes with some out-

of-the-box support, but you may want to extend it for your own purposes. This chapter shows you how.d

5.1. Update POM Dependencies

First up (just as we did when prototyping, see Chapter 2, Using Restful Objects in Prototypes), we need

to reference the Restful Objects viewer:

<dependencies>

 ...

 <dependency>

 <groupId>org.starobjects.restful</groupId>

 <artifactId>viewer</artifactId>

 </dependency>

 ...

</dependencies>

Here I'm assuming that this is in the webapp submodule where the parent defines the version in its

<dependencyManagement> section (see Section 2.1, “Parent Module”).

5.2. web.xml

Next, we need to update web.xml to specify the servlets, listeners and filters needed for Restful Objects.

You'll find that some of these are shared with HTML viewer.

Deploying Restful Objects Webapps DTD and Display Name

40

DTD and Display Name

To start with, we have the boilerplate DTD reference and <displayname>:t

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://

java.sun.com/dtd/web-app_2_3.dtd"[]>

<web-app>

 <display-name>Restful Objects</display-name>

 ...

</web-app>

Context Parameters

There is one context parameter to add:

<web-app>

 ...

 <context-param>

 <param-name>javax.ws.rs.Application</param-name>

 <param-value>org.starobjects.restful.viewer.RestfulApplication</param-value>

 </context-param>

 ...

</web-app>

This is used by RestEasy to defines the supported resources.

Filters and Filter Mappings

Next, filters.

<web-app>

 ...

 <filter>

 <filter-name>NakedObjectsSessionFilter</filter-name>

 <filter-class>org.nakedobjects.webapp.NakedObjectsSessionFilter</filter-class>

 <init-param>

 <param-name>authenticationSessionLookupStrategy</param-name>

 <param-

value>org.starobjects.restful.viewer.authentication.AuthenticationSessionLookupStrategyExtended</

param-value>

 </init-param>

 </filter>

 <filter>

 <filter-name>NakedObjectsStaticContentFilter</filter-name>

 <filter-class>org.nakedobjects.webapp.NakedObjectsSessionFilter</filter-class>

 </filter>

 ...

</web-app>

The NakedObjectsSessionFilter is used to ensure that there is an authentication session in place.

As you might infer from its <init-param>, the mechanism it does to lookup this authentication session

is pluggable. The one specified will fake a session if running in EXPLORATION mode. But, again, more

on this in Section 5.4, “Authentication”.

The NakedObjectsStaticContentFilter is used to decorate any static resources (Javascript, CSS

or images) so that they are cached client-side.

The mappings for these two filters are:

Deploying Restful Objects Webapps Listeners

Restful Objects 1.0 Users Guide (0.1) 41

<web-app>

 ...

 <filter-mapping>

 <filter-name>NakedObjectsSessionFilter</filter-name>

 <url-pattern>*</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>NakedObjectsStaticContentFilter</filter-name>

 <url-pattern>*.js</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>NakedObjectsStaticContentFilter</filter-name>

 <url-pattern>*.css</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>NakedObjectsStaticContentFilter</filter-name>

 <url-pattern>*.png</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>NakedObjectsStaticContentFilter</filter-name>

 <url-pattern>*.jpg</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>NakedObjectsStaticContentFilter</filter-name>

 <url-pattern>*.gif</url-pattern>

 </filter-mapping>

 ...

</web-app>

Listeners

Two listeners are required, one for Restful Objects/Naked Objects and one for RestEasy. These both

bootstrap the respective libraries:

<web-app>

 ...

 <listener>

 <listener-class>org.nakedobjects.webapp.NakedObjectsWebAppBootstrapper</listener-class>

 </listener>

 <listener>

 <listener-class>org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap</listener-

class>

 </listener>

 ...

</web-app>

Servlets and Servlet Mappings

Finally, we have the servlets:

<web-app>

 ...

 <servlet>

 <servlet-name>RestEasyDispatcher</servlet-name>

 <servlet-class>org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher</servlet-

class>

 </servlet>

 <servlet>

 <servlet-name>ResourceServlet</servlet-name>

Deploying Restful Objects Webapps Testing

42

 <servlet-class>org.nakedobjects.webapp.servlets.ResourceServlet</servlet-class>

 </servlet>

 ...

</web-app>

The main servlet is RestEasy's HttpServletDispatcher servlet, that handles all inbound requests.

In addition though we configure a Naked Objects' ResourceServlet to serve up Javascript, CSS and

images (the same as those decorated by the NakedObjectsStaticContentFilter).

The mappings for these servlets are:

<web-app>

 ...

 <servlet-mapping>

 <servlet-name>RestEasyDispatcher</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ResourceServlet</servlet-name>

 <url-pattern>*.js</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ResourceServlet</servlet-name>

 <url-pattern>*.css</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ResourceServlet</servlet-name>

 <url-pattern>*.png</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ResourceServlet</servlet-name>

 <url-pattern>*.jpg</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ResourceServlet</servlet-name>

 <url-pattern>*.gif</url-pattern>

 </servlet-mapping>

</web-app>

5.3. Testing

There are several ways you can run up the webapp.

Using NakedObjectsWebServer

The Naked Objects framework provides a simple bootstrapper class that will run an embedded instance

of Jetty against the web.xml. By default the reference to this bootstrapper is deliberately excluded, so to

use it comment back in the reference to org.nakedobjects.core:webserver:

<dependency>

 <groupId>org.nakedobjects.core</groupId>

 <artifactId>webserver</artifactId>

</dependency>

To run, just run org.nakedobjects.webserver.WebServer. This takes the following arguments:

• --deploymentType (defaults to SERVER)

Deploying Restful Objects Webapps Using Maven Jetty plugin

Restful Objects 1.0 Users Guide (0.1) 43

• --port (defaults to 8080)

• --address (defaults to localhost)

• --webapp resourceDirectory

For testing purposes you'll probably want EXPLORATION, which means you don't have to worry about

authentication. For production you'll probably want SERVER, in which case you do need to decide how

to handle authentication; but we'll discuss this more in Section 5.4, “Authentication”.

Using Maven Jetty plugin

Using the maven-jetty-plugin, we can use Maven to run an embedded instance of Jetty. First, add:

<build>

 <plugins>

 <plugin>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>maven-jetty-plugin</artifactId>

 <configuration>

 <contextPath>/</contextPath>

 </configuration>

 </plugin>

 </plugins>

</build>

Note

Due to a bug in Restful Objects, it is currently necessary to deploy to the root context (/).

Next, to run in EXPLORATION mode, update the web.xml:

<web-app>

 ...

 <context-param>

 <param-name>deploymentType</param-name>

 <param-value>EXPLORATION</param-value>

 </context-param>

 ...

</web-app>

As we've already mentioned, for testing you'll probably want EXPLORATION, while for production

you'll probably want SERVER. See Section 5.4, “Authentication” for more on this.

Note

In case you were wondering, NakedObjectsWebServer (the section called “Using

NakedObjectsWebServer”) does not currently honour deploymentType setting.

You can then run Jetty from Maven using:

mvn jetty:run

Deploy to an External Servlet Container

Finally, you can copy the WAR file and deploy it to an external servlet container.

Deploying Restful Objects Webapps Authentication

44

Note

Again, because of a bug in Restful Objects you will need to map it to the root context for

this to work.

5.4. Authentication

The RESTful architecture doesn't have too much to say about authentication, and (at the time of writing)

there are no supplementary standards to define how authentication should be implemented. And because

REST runs over HTTP we don't get any particular support from the network stack either. In fact, because

HTTP is stateless we don't even get the notion of a session or a connection.

Restful Objects therefore uses Naked Objects' authentication mechanism, with authentication performed

for each RESTful call. What this means depends on the deploymentType:

• if running in SERVER_EXPLORATION mode, then authentication is in effect switched off;

no credentials are supplied, and Naked Objects will use the first exploration user defined in

nakedobjects.properties, or a fallback "exploration" user otherwise

For example, if running in SERVER_EXPLORATION mode, then you can specify the user using:

nakedobjects.exploration.users=sven:role1, dick:role2, bob:role1|role2

• otherwise (if running SERVER_PROTOTYPE or SERVER), then authentication credentials are

needed.

Note

You can if you want run in EXPLORATION (or PROTOTYPE) mode rather than

SERVER_EXPLORATION (or SERVER_PROTOTYPE) mode. The difference is that

former only support single-users, while SERVER_* supports multiple concurrent users.

Calling Restful Objects in SERVER mode with no credentials will result in an exception:

Deploying Restful Objects Webapps Authentication

Restful Objects 1.0 Users Guide (0.1) 45

On the other hand, if user and password parameters are supplied, then we can login:

This behaviour is pluggable however, at two levels:

Deploying Restful Objects Webapps Authentication

46

• NakedObjectsSessionFilter uses the authenticationManagerLookupStrategy property to

specify a strategy for both finding credentials and for validating them against the Naked Objects

authentication manager.

The implementation provided by Restful Objects -

AuthenticationSessionLookupStrategyExtended in the package

org.starobjects.restful.viewer.authentication - is responsible for looking up credentials

using the username and password parameters. Once validated, it also binds the results to the

HttpSession so that future interactions do not credentials.

• If you lookup strategy implementation delegates to the Naked Objects authentication manager

(recommended), you might also want to change the Naked Objects' AuthenticationManager

implementation itself. This is done using the nakedobjects.authentication key in

nakedobjects.properties:

nakedobjects.authentication=com.mycompany.nakedobjects.authentication.MyAuthenticationManagerInstaller

In the future there will doubtless be standardized (WS-* style) approaches for RESTful authenticatication,

but the above should provide enough flexibility in the meantime.

	Restful Objects 1.0 Users Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Introducing REST
	1.2. Introducing Restful Objects
	1.3. Limitations of REST

	Chapter 2. Using Restful Objects in Prototypes
	2.1. Parent Module
	2.2. CommandLine Module
	2.3. Launch Configuration
	2.4. Testing the Viewer

	Chapter 3. Resources
	3.1. HomePageResource
	3.2. Services Resource
	3.3. Object Resource
	Objects
	Properties
	Collections
	Actions

	3.4. Metamodel (specs) Resource
	All Classes
	Class (NakedObjectSpecification)
	Class Members (NakedObjectMember)
	Facets

	3.5. Security (user) Resource

	Chapter 4. Writing Client-side Applications
	4.1. AbstractRestfulClient
	4.2. RestEasy's Client-side Framework

	Chapter 5. Deploying Restful Objects Webapps
	5.1. Update POM Dependencies
	5.2. web.xml
	DTD and Display Name
	Context Parameters
	Filters and Filter Mappings
	Listeners
	Servlets and Servlet Mappings

	5.3. Testing
	Using NakedObjectsWebServer
	Using Maven Jetty plugin
	Deploy to an External Servlet Container

	5.4. Authentication

